

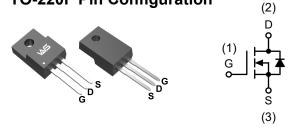
N-Channel MOSFET

General Description

The WSR28N65F is CoolFET II MOSFET family that is utilizing charge balance technology for extremely low on-resistance and low gate charge performance. P/T is suitable for applications which require superior power density and outstanding efficiency

Features

- Low Crss
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- RoHS product


Product Summery

BV _{DSS}	R _{DSON}	Ι _D
650V	280mΩ	28A

Applications

- Uninterruptible Power Supply(UPS)
- Power Factor Correction (PFC)

TO-220F Pin Configuration

Symbol Parameter Units Rating 650 V_{DS} **Drain-Source Voltage** V V V_{GS} Gate-Source Voltage ± 30 **Continuous Drain Current** 28 I_D А **I**_{DM} Pulsed Drain Current ¹ 44 А 250 E_{AS} Single Pulse Avalanche Energy² mJ P_D 25.5 W **Power Dissipation** -55 to 150 T_{STG} Storage Temperature Range °C -55 to 150 °C ΤJ **Operating Junction Temperature Range**

5 Vgc`ihY`AUI]aia`FUhjb[gÁkývcÁMÁGÍ»Ô,ÁW}|^••Áuc@k;ã^Áp[c^åD

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{0JA}	Junction-to-Ambient		62	°C/W	
R _{θJC}	Junction-to-Case		1.2	°C/W	

N-Channel MOSFET

Electrical Characteristics Áŷ/JMÁGÍ »ÔÁŊ/ |^••ÁJc@\;ã^Áp[c^åD

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage V _{GS} =0V , I _D =250uA		650			V	
∆BV _{DSS} /∆T _J	BV _{DSS} Temperature Coefficient	ID=250uA,Reference25 [°] C		0.7		V/℃	
R _{DS(ON)}	Drain-to-Source On-Resistance	V _{GS} =10V,I _D =3.2A		280	340	mΩ	
V _{GS(th)}	Gate Threshold Voltage $V_{GS}=V_{DS}$, I_D =250uA		2.5	3.3	4.5	V	
la an	Desig Ocument Lockson Ocument	$V_{\text{DS}}\text{=}650\text{V}$, $V_{\text{GS}}\text{=}0\text{V}$, $T_{\text{J}}\text{=}25^\circ\!\text{C}$			1		
I _{DSS}	Drain-Source Leakage Current	$V_{\text{DS}}\text{=}520V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{C}}\text{=}125^\circ\!\!\mathbb{C}$			50	uA	
I _{GSS}	Gate-Source Leakage Current, forward	V _{GS} =30V , V _{DS} =0V			100	nA	
IGSS	Gate-Source Leakage Current, reverse	V _{GS} =-30V , V _{DS} =0V			-100	nA	
Qg	Total Gate Charge			2.77			
Q _{gs}	Gate-Source Charge V_{DS} =400V , V_{GS} =10V , I_D =7A			5.8		nC	
Q _{gd}	Gate-Drain Charge			20.4			
T _{d(on)}	Turn-On Delay Time			6.2			
Tr	Rise Time	V _{DS} =400V , I _D =7A		21			
T _{d(off)}	Turn-Off Delay Time	V _{GS} =10V , R _G =4.7Ω,		28.8		ns	
T _f	Fall Time			22.4			
Ciss	Input Capacitance			781			
C _{oss}	Output Capacitance V _{DS} =100V , V _{GS} =0V , f=1M			30.3		pF	
C _{rss}	Reverse Transfer Capacitance			1.47			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current (Body Diode)				14	А
I _{SM}	Maximum Pulsed Current (Body Diode)	$V_{G}=V_{D}=0V$, Force Current			44	А
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =7A , TJ=25℃		0.7	1.5	V
t _{rr}	Reverse Recovery Time			218		nS
Qrr	Reverse Recovery Charge	IF=7A,dI/dt=100A/µs,Tյ=25℃		1.1		nC

Note :

- $1_{\mbox{\tiny V}}$ The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- $2 \$ The EAS data shows Max. rating . L=0.5mH, IAS =7A, VDD =50V, RG=25 Ω
- 3. The test condition is Pulse Test: ISD \leq ID, di/dt = 100A/us, VDD \leq BVDSS, Starting at TJ =25 $^{\circ}$ C
- 4. The power dissipation is limited by 150 $^\circ\!\mathrm{C}$ junction temperature
- $5_{\rm N}$ The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

N-Channel MOSFET

Typical Characteristics

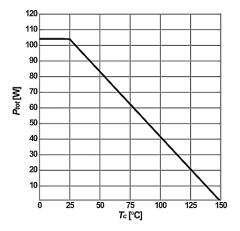


Figure1: Power dissipation (Non FullPAK)

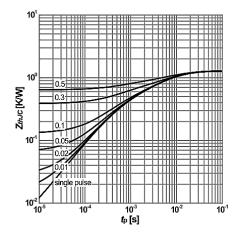
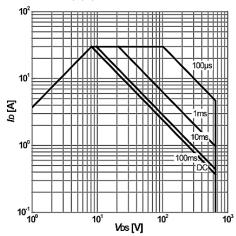
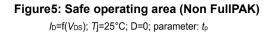




Figure3:Max. transient thermal impedance $Z_{thJC}=f(t_p)$; parameter: D= t_p/T

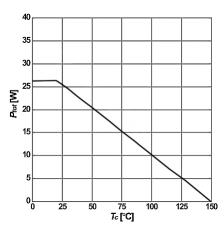


Figure2: Power dissipation (FullPAK)

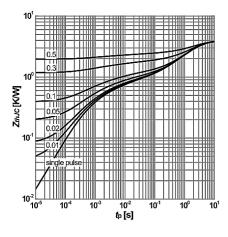


Figure4:Max. transient thermal impedance

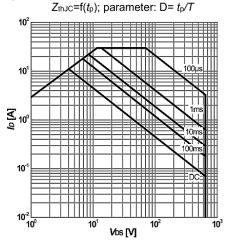
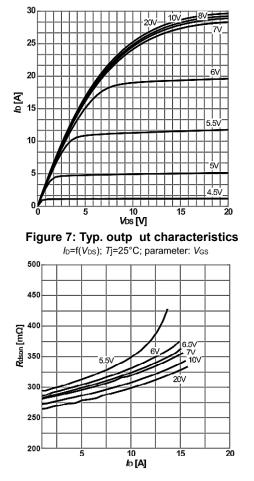



Figure6: Safe operating area (FullPAK) /_D=f(V_Ds); 7j=25°C; D=0; parameter: t_p

N-Channel MOSFET

Typical Characteristics (Cont.)

Figure9 : Typ. drain-source on-state resistance *R*_{DS}(on)=f(*I*_D); *T*j=25°C; parameter: *V*_{GS}

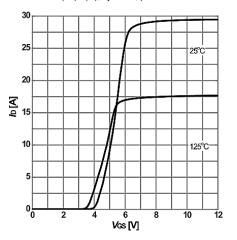


Figure 11: Type. transfer characteristics /b=f(VGs); VDs=20V; parameter: Tj

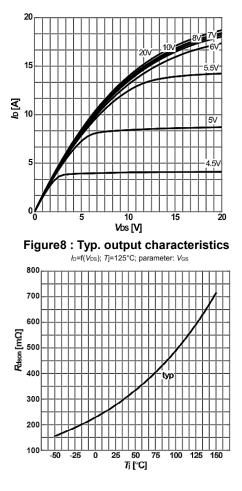
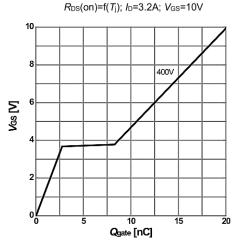
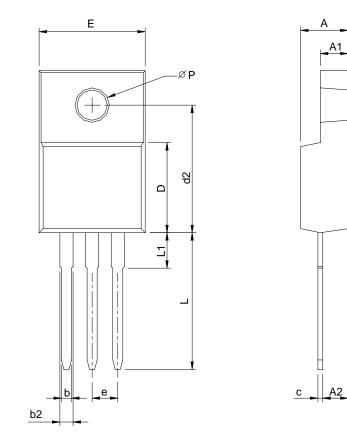
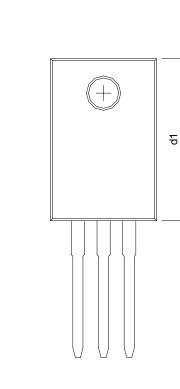
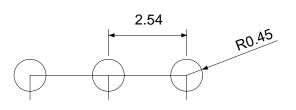


Figure 10: drain -source on-state resistance


Figure 12: Type. gate charge VGS=f(Qgate); ID=3.2A pulsed; VDS=480V

N-Channel MOSFET


Packaging information

S Y	TO-220F-3L				
SY MBOL	MILLIMETERS		INC	IES	
	MIN.	MAX.	MIN.	MAX.	
А	4.20	4.80	0.165	0.189	
A1	2.34	3.20	0.092	0.126	
A2	2.10	2.90	0.083	0.114	
b	0.50	0.90	0.020	0.035	
b2	0.91	1.90	0.035	0.075	
С	0.30	0.80	0.012	0.031	
D	8.10	9.40	0.319	0.370	
d1	14.50	16.50	0.571	0.650	
d2	12.10	12.90	0.476	0.508	
Е	9.70	10.70	0.382	0.421	
е	2.54 BSC		0.100	BSC	
L	13.00	14.50	0.512	0.570	
L1	1.60	4.00	0.063	0.157	
Р	3.00	3.60	0.118	0.142	

RECOMMENDED LAND PATTERN

UNIT: mm

А Α1

Attention

1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.

2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.

3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

5, In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.

7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.

9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.