

N-Ch MOSFET

General Description

This WSR20N65F is produced using Truesemi's

advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching

performance, and withstand high energy

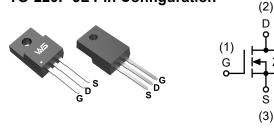
pulse in the avalanche and commutation mode. These devices are well suited for

effighency switched mode power supplies, active power factor correction based on

half bridge topology.

Features

- High ruggedness
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability


Product Summery

BV _{DSS}	R _{DSON}	Ι _D
650V	400mΩ	20A

Applications

- Power Management .
- AC-DC Converter
- LED TV Back Light

TO-220F-3L Pin Configuration

Absolute Maximum Ratings T_c=25°C unless otherwise specified

Symbol	Parameter		Value	Units
V _{DSS}	Drain-Source Voltage		650	V
V_{GS}	Gate-Source Voltage		± 30	V
	Drein Current	T _C = 25℃	20*	A
I _D	Drain Current	T _c = 100℃	12*	A
I _{DM}	Pulsed Drain Current		76*	A
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	884	mJ
E _{AR}	Repetitive Avalanche Energy	(Note 1)	4	mJ
I _{AR}	Repetitive avalanche current	(Note 1)	20	A
P _D	Power Dissipation (T _C = 25℃)		80	W
T _J , T _{STG}	Operating and Storage Temperature	e Range	-55 to +150	°C

* Drain current limited by maximum junction temperature.

Thermal Resistance Characteristics

Symbol Parameter		Value	Units
R _{θJC}	Thermal Resistance, Junction-to-Case	1.56	°C/W
R _{eja}	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

N-Ch MOSFET

Electrical Characteristics T_c =25 °C unless otherwise specified

Symbol	Parameter	Test Conditions		Тур	Max	Units	
On Characteristics							
V_{GS}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_{D} = 250 uA	3		5	V	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 10A	-	400	480	mΩ	
g _{fs}	Forward transfer conductance(note 3)	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ (Note 3)		18		S	

Off Characteristics

BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 uA	650	 	V
	Zara Cata Valtaga Drain Current	V _{DS} = 650 V, V _{GS} = 0 V		 1	
DSS	Zero Gate Voltage Drain Current	V _{DS} = 650 V, T _C =125°C		 100	uA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V		 100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} =- 30 V, V _{DS} = 0 V		 -100	nA

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz	 5150	 pF
C _{oss}	Output Capacitance		 264	 pF
C _{rss}	Reverse Transfer Capacitance		 24	 pF

Switching Characteristics

t _{d(on)}	Turn-On Time	V _{DS} = 300 V, I _D = 20A,		149		ns
t _r	Turn-On Rise Time	$R_{\rm G} = 25 \Omega$		197	-	ns
t _{d(off)}	Turn-Off Delay Time	(Note 3,4)	-	83	-	ns
t _f	Turn-Off Fall Time			468	-	ns
Qg	Total Gate Charge	V _{DS} = 480 V, I _D = 20A,	-	57	65	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		23	-	nC
Q _{gd}	Gate-Drain Charge	(Note 3,4)		13		nC

Source-Drain Diode Maximum Ratings and Characteristics

۱ _s	Continuous Source-Drain Diode Forward Current		 	20	٨
I _{SM}	Pulsed Source-Drain Diode Forward Current		 	72	A
V _{SD}	Source-Drain Diode Forward Voltage $I_{S} = 20A, V_{GS} = 0 V$		 	1.4	V
t _{rr}	Reverse Recovery Time	I _S =20A, V _{GS} = 0 V	 435		ns
Q _{rr}	Reverse Recovery Charge	$di_{F}/dt = 100 \text{ A}/\mu \text{s}$ (Note 3,4)	 4.1		uC

Note:

1. Repeated rating: Pulse width limited by safe operating area

2. L=5mH, IAS=20A, VDD=50V, RG=25 Ω , Starting TJ=25 $^{\circ}$ C

3. Pulse test: Pulse width≤300us, Duty cycle≤2%

4. Essentially independent of operating temperature typical characteristics

WSR20N65F

N-Ch MOSFET

Typical Characteristics

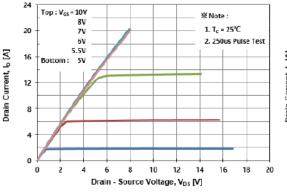


Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

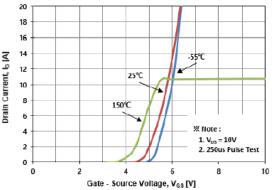


Fig.3 On-Resistance Variation with Drain Current and Gate Voltage

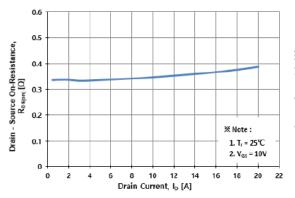


Fig. 5 Typical Capacitance Characteristics

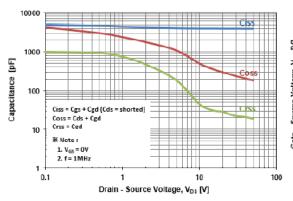


Fig. 4 Body Diode Forward Voltage Variation with Source Current

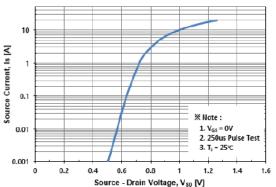
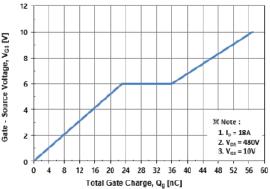
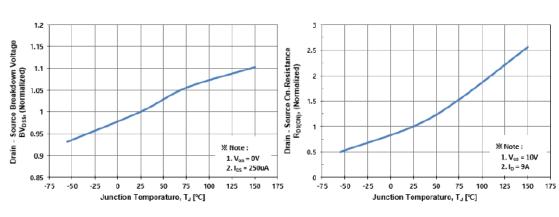
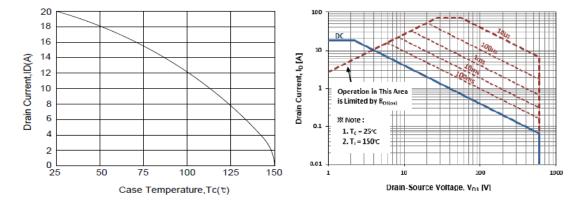



Fig. 6 Typical Total Gate Charge Characteristics

WSR20N65F

N-Ch MOSFET

Typical Characteristics

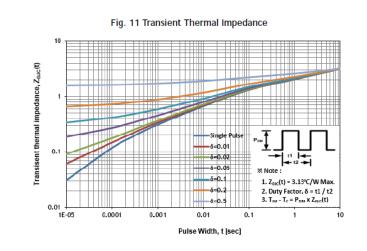
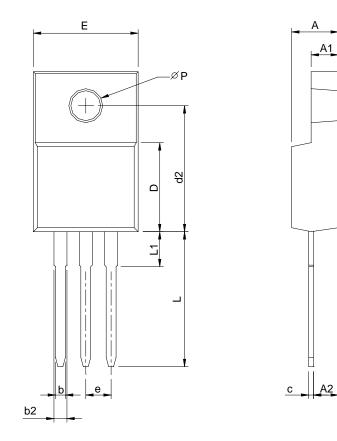
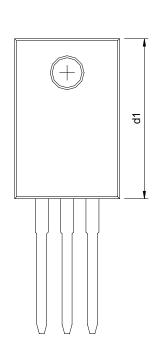

Fig. 7 Breakdown Voltage Variation vs. Temperature

Fig. 8 On-Resistance Variation vs. Temperature

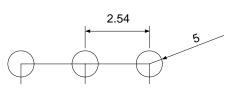
Fig. 9 Maximum Drain Current vs. Case Temperature

Fig. 10 Maximum Safe Operating Area





N-Ch MOSFET


Packaging information

S Y	TO-220F-3L				
SY MBO	MILLIM	ETERS	INCHES		
O L	MIN.	MAX.	MIN.	MAX.	
Α	4.20	4.80	0.165	0.189	
A1	2.34	3.20	0.092	0.126	
A2	2.10	2.90	0.083	0.114	
b	0.50	0.90	0.020	0.035	
b2	0.91	1.90	0.035	0.075	
С	0.30	0.80	0.012	0.031	
D	8.10	9.40	0.319	0.370	
d1	14.50	16.50	0.571	0.650	
d2	12.10	12.90	0.476	0.508	
Е	9.70	10.70	0.382	0.421	
е	2.54	BSC	0.10	0 BSC	
L	13.00	14.50	0.512	0.570	
L1	1.60	4.00	0.063	0.157	
Р	3.00	3.60	0.118	0.142	

RECOMMENDED LAND PATTERN

81,7 PP

Attention

1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.

2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.

3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

5. In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.

7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.

9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.